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Research Impact Statement: Coupling a hydroclimatic and a fish model enabled us to mechanistically evalu-
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ABSTRACT: Climate change is reducing summertime water availability and elevating water temperature, placing
human consumptive needs in competition with needs of coldwater fishes. We worked with natural resource man-
agers in the Snoqualmie River (Washington, USA) to develop riparian management scenarios, and used a process-
based modeling system to examine how a threatened population of Chinook salmon (Oncorhynchus tschawytscha)
may respond to climate change and whether riparian restoration could reduce climate effects. Linking models of
global climate, regional hydrology, water temperature, and fish, we projected that streams would become warmer
year-round and drier during summer, further stressing salmon. Climate change accelerated egg emergence,
increased juvenile growth and survival, and accelerated outmigration of sub-yearling migrants. Growth was
depressed for salmon remaining instream during summer (potential yearling migrants). Riparian restoration coun-
teracted ~10% of summer increases in water temperature, and affected salmon similarly regardless of whether
riparian buffers were partially or fully restored, whereas riparian degradation further warmed streams. Riparian
restoration fully mitigated climate change effects on potential yearling migrant size, but only minimally affected
sub-yearling migrants (assessment metrics changed <2%). Our results will be useful for watershed managers in
aligning priorities for fish and humans and our framework can be applied elsewhere.
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INTRODUCTION

Climate change has altered freshwater thermal
regimes worldwide (van Vliet et al. 2011; Orr et
al. 2015; Isaak et al. 2018). In the Pacific Northwest

(PNW) USA, a warmer winter climate is expected to
cause snow to accumulate less and to melt earlier,
resulting in decreased water availability in summer
(Jefferson 2011; Tohver et al. 2014). Lower summer
flows may exacerbate warming in rivers where water
temperatures have already increased (Kaushal et
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al. 2010; Isaak et al. 2012; Orr et al. 2015). Lower
summer flows and warmer water temperatures will
challenge water resource managers tasked with
ensuring an adequate supply of high-quality water
for both humans (e.g., irrigation, drinking water) and
aquatic species like coldwater fishes.

In a warmer future, fish populations are predicted
to experience range reductions (Isaak and
Rieman 2013; Radinger et al. 2017), phenology shifts
(Otero et al. 2014; Peer and Miller 2014), changes in
food webs (Albouy et al. 2014; Rosenblatt and
Schmitz 2016), and altered physiological processes,
growth, and survival (Lynch et al. 2016; Whitney et
al. 2016). In the PNW, concern exists that economi-
cally, culturally, and ecologically valued Pacific
salmon and steelhead (Oncorhynchus spp.) will be
increasingly stressed by climate change in addition to
existing stressors such as habitat loss and degrada-
tion, commercial harvest, hydropower, and hatchery
practices that led to the listing of many populations
under the United States Endangered Species Act
(USESA; Ford et al. 2015). Fisheries managers are
particularly interested in understanding natural spa-
tiotemporal patterns of habitat, how human activities
have modified these patterns, how climate-induced
changes may impact fish populations, and what con-
servation strategies are most likely to maintain
robust fish populations into the future. Despite the
effectiveness of restoring riparian vegetation in

modulating water temperature (Chen et al. 1998; Sun
et al. 2015; Cao et al. 2016; Fabris et al. 2018; Seixas
et al. 2018), previous efforts to revegetate riparian
areas for improving instream conditions for salmon
have been challenged by farmers concerned with los-
ing productive land, and by local organizations and
policy makers tasked with preserving and increasing
local agriculture. Some of the most productive salmon
habitat occurs in lowland tributaries, side channels,
and floodplains that often abut or encompass produc-
tive agricultural lands (Jeffres et al. 2008; Lusardi et
al. 2020). Hence, a collaborative, science-based
approach and a transparent decision-making process
is required for effective watershed management.

To that end, we present a case study in which we
worked with natural resource managers to develop a
set of riparian management scenarios, and used a
process-based modeling system to examine how one
threatened Pacific salmon population may respond to
riparian management along with climate change.
This study focused on Chinook salmon (Oncorhynchus
tschawytscha) in the Snoqualmie River watershed
(Washington State, USA; Figure 1). Our riparian
management scenarios included one that represented
the upper limit of what restored conditions could
aspire to be if not constrained by land use, and two
plausible scenarios—one scenario that included active
restoration of riparian buffers in areas where it
would be feasible to do so, and one scenario that only

FIGURE 1. Map of the Snoqualmie River watershed and its location in Washington state USA. The base map is land use and land cover
from 2019 (mrlc.gov). DHSVM-RBM, Distributed Hydrology Soil Vegetation Model-River Basin Model.
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protected buffers coincident with existing legal limits
(including degradation of intact areas to widths
allowed by current regulations) with no active ripar-
ian restoration.

We adapted and linked an existing physically
based hydrology and water temperature model (Wig-
mosta et al. 2002; Yearsley 2009; Sun et al. 2015)
and an existing individual-based fish model (IBM;
Fullerton et al. 2017; Hawkins et al. 2020). Both the
physical model, DHSVM-RBM (distributed hydrology
soil vegetation model—river basin model), and the
fish IBM were previously and independently applied
in the Snoqualmie watershed. Using DHSVM-RBM,
Lee et al. (2020) predicted large increases in water
temperature and decreases in summer flow due to a
reduced future snowpack. However, their model did
not account for the direct effects of snowmelt on
water temperature. Hawkins et al. (2020) used spa-
tiotemporally explicit water temperatures predicted
from empirical data and a spatial stream network
model (Steel et al. 2019) as inputs into the fish IBM.
Their results indicated that Chinook salmon could be
stressed by both warmer water temperatures and a
non-native warmwater predator. Although survival
(Beamer and Pess 1999; Greene et al. 2005; Ward et
al. 2015) and migration rates of salmon (Aarestrup et
al. 2002; Notch et al. 2020) have shown strong associ-
ation with flow, data were unavailable at sufficient
resolution for incorporation into the Hawkins et al.
model.

For this study, we used the version of DHSVM-
RBM updated by Yan et al. (2021), which accounts
for the snowmelt cooling effect on water temperature,
to predict spatiotemporally explicit water tempera-
tures and flows needed as inputs to the fish IBM. We
adapted the fish IBM to use these data, which
allowed us to project into the future; this was not
possible with the previous IBM where the temporal
scope was limited by the availability of empirical
water temperature data. We also developed fish-flow
relationships for this version that allowed us to
explicitly consider effects of flow on incubating eggs
and outmigrating juveniles. Moreover, by dynami-
cally linking DHSVM-RBM with the fish IBM, we
were able to capture climate–river–fish dynamics that
are sensitive to changing climate conditions. Our spe-
cific objectives were to (1) examine potential effects of
future flows and temperatures on juvenile Chinook
salmon and (2) consider the extent to which riparian
restoration in the Snoqualmie watershed could offset
potential climate impacts to juveniles during freshwa-
ter residence. Our predictions of possible outcomes
for salmon can be used by managers to weigh the tra-
deoffs of potential management activities benefitting
different water users.

METHODS

Study Area

The Snoqualmie River drains over 1,800 km2 on the
west side of the Cascade Range, Washington, USA
(Figure 1). Its three main forks (North, Middle, and
South) run through mostly forested public land before
converging near the city of North Bend to form the
mainstem Snoqualmie River which then flows over
Snoqualmie Falls, an anadromous fish barrier. The
Middle Fork (the upper mainstem) provides the major-
ity of the Snoqualmie’s flow in the summer. Below the
falls, major tributaries include the Tolt and Raging
Rivers and several smaller creeks used by salmon. The
Tolt River is impounded and protected to provide
drinking water for the City of Seattle, and the Raging
River is a relatively warm tributary. Below the study
area, the Snoqualmie River joins the Skykomish River
to form the Snohomish River near the city of Monroe
and enters Puget Sound shortly downstream. Stream-
flow peaks in winter from rain and again in spring
from snowmelt. Snowmelt cools spring and early sum-
mer water temperatures.

The headwaters are owned predominantly by the
United States (U.S.) Forest Service and the Washing-
ton Department of Natural Resources. However,
nearly a quarter of the watershed is held in private
industrial timber production. Logging peaked during
the early 20th Century, largely eliminating old-
growth trees. Due to continued logging outside of a
designated wilderness area, most of the current forest
is third- or fourth-generation regrowth. The water-
shed provides traditional natural and cultural
resources for the Snoqualmie, Tulalip, and Muckle-
shoot Indian Tribes, and over 16 km2 of land in the
watershed is protected for agricultural uses. Agricul-
ture, residential, and commercial land use are preva-
lent near the convergence of the three forks and
downstream in the Snoqualmie Valley.

The lower watershed below Snoqualmie Falls sup-
ports wild populations of several anadromous salmo-
nids including Chinook (O. tschawytscha), chum (O.
keta), coho (O. kisutch), and pink salmon (O. gor-
buscha), and steelhead/rainbow trout (O. mykiss) and
cutthroat trout (O. clarkii). Bull trout (Salvelinus con-
fluentus) or Dolly Varden (S. malma) may have been
present historically, but they have not been observed
recently (Thompson et al. 2011). The Chinook salmon
population is considered ocean type, with a mix of sub-
yearling and yearling migrant life histories. The year-
ling life-history type is slightly more prevalent in the
Snoqualmie River population than in other Puget
Sound populations, with 25%–30% of returning adults
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comprised of yearling migrants (King County 2017),
although the proportion of yearling migrants in many
Puget Sound populations was higher in the past (Bee-
chie et al. 2006). Puget Sound Chinook Salmon, Puget
Sound Steelhead, and bull trout are listed as threat-
ened under the USESA. Local salmon populations
have been in rapid decline, and are increasingly
stressed by warm, low-flow conditions during summer,
as well as by extreme events such as those observed
during 2015 when a low snowpack led to record low
summer flows and high water temperatures (King
County 2016a; Steel et al. 2019). The habitats used by
anadromous salmon (i.e., below the falls) are where
the vast majority of residential and agricultural land
uses occur.

Analytical Framework

We used a sequence of models to evaluate how Chi-
nook salmon may respond to climate change and
riparian management scenarios (Figure 2).

Specifically, we used outputs from 10 global circula-
tion models (GCM), downscaled to produce regional
projections of air temperature and precipitation (see
“Climate Models”). We used these outputs to force
DHSVM-RBM, which predicted flow and water tem-
perature for each stream reach every 3 h (see
“Physics-Based Hydrology and Water Temperature
Model”). Finally, we used flows and water tempera-
tures in the fish model (see “Individual-Based Fish
Model”) that predicted phenology, growth, and sur-
vival of juvenile Chinook salmon. Both the physical
model and the fish model were calibrated for a period
of years for which empirical data were available
(2001–2013). Once calibrated, we simulated fish
responses to flow and temperature for historical
(1995–2005) and future (2089–2099) periods for which
global climate model inputs were available. We ran
all models through a set of four scenarios (see “Ripar-
ian Vegetation Scenarios”) to examine the extent to
which riparian restoration could offset expected
impacts to salmon caused by climate change during
freshwater residency.

FIGURE 2. Models used and comparisons explored for examining how Chinook salmon may respond to climate change and riparian
restoration.
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Climate Models

To envision how salmon may respond to potential
future streamflow and water temperature changes,
we forced the hydrology and water temperature
model with climate projections (Figure S1) from 10
GCMs produced under the representative concentra-
tion pathway (RCP) 8.5, which is a high warming
future scenario associated with no climate action and
high greenhouse gas emissions (van Vuuren et
al. 2011). We used 10 GCMs from the Coupled Model
Intercomparison Project Phase 5 (Taylor et al. 2012)
that are known to perform well in reproducing histor-
ical climate variability in the PNW (Rupp et
al. 2013): bcc-csm1-1-m, CanESM2, CCSM4, CNRM-
CM5, CSIRO-Mk3-6-0, HadGEM2-CC365, HadGEM2-
ES365, IPSL-CM5A-MR, MIROC5, and NorESM1-M.
The GCM data were statistically downscaled to 1/
16th degree resolution using the Multivariate Adap-
tive Constructed Analogs (MACA) method (Abatzo-
glou and Brown 2012), which bias corrects GCM
outputs to the statistics of meteorological observa-
tions and downscales the outputs to a finer resolution
by using a pattern matching constructed analogues
algorithm. The MACA training data used for bias cor-
rection were the long-term (1950–2013) gridded sur-
face meteorological dataset at a spatial resolution of
1/16 degree (Livneh et al. 2013), which were devel-
oped largely based on observations from National

Climatic Data Center Cooperative Observer stations
across the conterminous U.S.

Riparian Vegetation Scenarios

We evaluated four riparian vegetation scenarios:
(1) Baseline: existing landscape conditions, (2) Mini-
mum protection: conservation of riparian areas
according to existing regulations, conserving existing
intact riparian areas and further degrading other
areas, (3) Partial restoration: conservation of existing
intact riparian areas and partial restoration of lower
quality riparian areas in congruence with existing
and planned land uses, and (4) Full restoration: full
restoration of all riparian areas (Figure 3). The first
scenario captures current conditions and serves as a
baseline to compare to future climate scenarios and
other riparian management scenarios. The other sce-
narios reflect issues that natural resource managers
grapple with and were designed to assist them in
their decision-making process. For the minimum pro-
tection scenario, we protected riparian buffers in
reaches that already had wide buffers that were
unlikely to be altered due to existing forest protec-
tions (100–150 m), but we reduced riparian buffer
widths in other reaches to 5–10 m to match existing
regulations in particular land use categories and to
reflect ongoing and increasing human influences. In

FIGURE 3. Riparian buffer widths (a) or change in buffer widths (b–d) associated with four riparian vegetation scenarios: (a) Baseline:
existing riparian conditions; (b) Minimum protection: protect existing ≥150-m riparian areas and reduce all others to 5–10 m; (c) Partial res-
toration: protect existing ≥150-m riparian areas, increase existing 40- to 100-m buffers in forested areas to 150 m, and increase buffers along
the mainstem to 20–40 m; and (d) Full restoration: all riparian areas become ≥150 m. Note that each panel has a unique color scale range.
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the partial restoration scenario, we protected existing
wide buffers as above, but we restored buffers in For-
est Production-zoned areas to a width of 100–150 m,
restored buffers within agricultural or residential
areas to a width of 40–100 m, and restored riparian
buffers in the lower basin below Snoqualmie Falls to
a width of 20–40 m. The full restoration scenario rep-
resents a best-case scenario illustrating what might
have been possible historically. In this scenario, we
assumed riparian buffers were 100–150 m wide on
both banks for all river reaches.

Our riparian scenarios were informed by recom-
mendations for riparian buffer widths produced by a
task force of co-managers (including one of us: MJB)
that reflected the principles of balancing different
land uses, and which differed across classes of stream
type and land use (King County 2020). We shared
our approach and early results with other resource
managers and their stakeholders to solicit feedback
for refining scenarios, and to illustrate the potential
benefits and tradeoffs for fish. We worked with multi-
ple local advisory groups, including the Snohomish
Basin Salmon Recovery Technical Committee, the
Snoqualmie Watershed Forum, and the Snoqualmie
Fish, Farm & Flood Advisory Committee. These
groups have membership from a broad swath of
resource managers (tribal, local, county, state, fed-
eral, and nongovernmental organizations and univer-
sities). We did not receive any suggestions for
refining riparian scenarios, likely because our scenar-
ios were developed in alignment with ongoing ripar-
ian planning processes. We did not suggest a “best”
course of action, but instead provided plausible
generic options (to protect privacy of individual land-
owners) for consideration alongside other socioeco-
nomic and political issues that could lead to a
strategy that balances the needs of user groups. Our
goal was to provide information about how the sce-
narios affected salmon so that the information could
be incorporated into guidance that flexibly accommo-
dates local knowledge and stakeholder values.

Physics-Based Hydrology and Water Temperature
Model

We used DHSVM-RBM to explore the effect of ripar-
ian management scenarios and climate change on
streamflow and water temperature under historical
and future climates. DHSVM-RBM couples a physics-
based hydrologic model (distributed hydrology soil veg-
etation model, DHSVM) and a vector-based semi-
Lagrangian water temperature model (river basin
model, RBM) to produce spatially distributed simula-
tions of streamflow and water temperature at a time
step of 3 h over the stream networks composed of river

segments ranging in length from 100 to 1,000 s of
meters (Sun et al. 2015). The river network was gener-
ated using the Python-based pre-processing tool that
determines stream topology and extracts vector stream
lines from the watershed digital elevation model (Per-
kins et al. 2019). Wigmosta et al. (1994) and Wigmosta
et al. (2002) outline the DHSVM model physics and
structure, Yearsley (2009) describes RBM physics and
structure, and Sun et al. (2015) describes the coupling
scheme of DHSVM and RBM as well as the model rep-
resentation of riparian shading. For a wide range of cli-
mate and physiographic conditions, DHSVM
parameter sensitivity, model performance, and sources
of uncertainties with respect to parameterization,
model structure, and input data are well documented
by a large body of literature, for example, Cuo et al.
(2009), Cristea et al. (2014), Du et al. (2014), Perkins
et al. (2019), Sun et al. (2016, 2019), and Thyer et al.
(2004).

Essentially, segment-by-segment output of water
fluxes (i.e., inflows and outflows) from DHSVM and
radiation fluxes (i.e., downward shortwave and long-
wave radiations modified by topography and riparian
vegetation) are passed to RBM for temperature model-
ing by solving the thermal energy budget using a semi-
Lagrangian particle-tracking scheme in the stream net-
work. The riparian shading effect on radiation fluxes
incident on water surfaces is simulated as a function of
segment-specific riparian characteristics (including
canopy height, buffer width, leaf area index, and
canopy-to-bank distance) and geometries of stream seg-
ments (including segment length, width, and orienta-
tion). The riparian vegetation parameters were
estimated based on tree species, literature values, and
forest surveys (Wharton et al. 2004; Yearsley et
al. 2019). See Appendix S1 for a fuller description.

DHSVM-RBM does not include process representa-
tion of confined aquifers or hyporheic exchange on
hydrology and temperature modeling. Such processes
likely exist in the Snoqualmie watershed (McGill et
al. 2021), and if present, may diminish variability
and extremes in water temperature. Groundwater is
known to produce temporally stable but spatially var-
iable thermal habitats that can provide refuge to fish
during thermally stressful periods (Torgersen et
al. 1999; Snyder et al. 2015). We also did not adjust
above-stream meteorology inputs (air temperature,
wind speed) according to riparian scenarios due to a
lack of data and because previous research suggests
that net radiation is the dominant component of heat
gain/loss in rivers (Caissie 2006).

For this study, we used a version of DHSVM-RBM
(Yan et al. 2021) that explicitly accounts for
snowmelt-induced sensible heat on the simulation of
river temperature. The timing and sources of snow-
melt are informed by DHSVM-simulated snowmelt
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across the whole watershed. For streams and rivers
that receive a substantial portion of their flow from
melting snow in the headwaters, predictions of water
temperature by the modified model can differ sub-
stantially from the prior model version that did not
explicitly consider the melt effect. Under the current
climate, vegetation, and riparian conditions, DHSVM-
simulated snow water equivalent (SWE), streamflows,
and water temperature agreed plausibly well with
observations distributed across the watershed. In
Tables S1 and S2, we summarize the findings of Yan
et al. (2021) about the model performance based on a
variety of metrics such as Nash-Sutcliffe Efficiency,
Kling–Gupta Efficiency, Pearson correlation coeffi-
cient, and mean absolute error.

Individual-Based Fish Model

We used an individual-based model (IBM) to evalu-
ate the individual and simultaneous effects of climate

change and riparian management scenarios on
threatened Chinook salmon in the Snoqualmie water-
shed (Figure 4). We summarized simulated behavior,
growth, and survival of individuals to assess
population-level responses including phenology of egg
emergence from spawning gravels and smolt outmi-
gration, body sizes of sub-yearling and yearling
migrants, and life stage-specific survival rates. We
refer readers to Fullerton et al. (2017) and Hawkins
et al. (2020) for details on model parameterization,
calibration and validation, and a global sensitivity
analysis to evaluate assumptions. To take advantage
of the spatiotemporally explicit flows produced by
DHSVM, we developed and implemented two fish-
flow relationships not present in the Hawkins et al.
model. Specifically, we can now evaluate the effects
of altered hydrology on egg survival and juvenile
salmon outmigration (see “Flow Effects on Egg Sur-
vival and Juvenile Outmigration”).

IBM Overview. The simulations begin on Septem-
ber 1 and end on August 31 of each year, and update

FIGURE 4. Schematic describing the sequencing of events during each individual-based model simulation. Egg mortality and the effect of
flow on movement were new to this version.
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twice daily at 06:00 and 18:00. During simulations, fish
eggs are deposited stochastically on dates and at loca-
tions where spawning has been observed over the last
decade (WDFW 2018). Egg development is based on
accumulated thermal exposure (Steel et al. 2012), and
egg survival is influenced by peak flows large enough to
scour redds (Beamer and Pess 1999; Kinsel et al. 2008).
After juveniles emerge (hatch and become free-
swimming alevins), movements are driven by stochastic
“decisions” by fish about where they would grow best.
Movement behaviors reflect reach-specific conditions of
water temperature, flow, and food availability. For
instance, crowded conditions and suboptimal habitat
cause higher movement. After a fish moves, its growth
is calculated using a bioenergetics framework. Survival
of juveniles is influenced by stochastic processes; larger
fish and those that grew well in the previous time step
have a better chance of surviving to the next time step.
Outmigration (i.e. downstream-biased movement) is
governed by body size, date, and environmental condi-
tions including flow and temperature; fish are consid-
ered sub-yearling migrants when they reach the river
mouth, and are removed from further simulation. Fish
remaining instream after July 10 are considered poten-
tial yearlings, which remain in streams and if they sur-
vive winter, would become outmigrating smolts the
following spring.

Flow Effects on Egg Survival and Juvenile Outmi-
gration. In this version of the IBM, we included the
potential for flow to (1) scour salmon eggs from redds
during high winter flow events and (2) enhance
downstream movement and outmigration by sub-
yearling migrants. Specific model adaptations, equa-
tions, and parameters are detailed in Appendix S2.

Survival of salmon has been shown to strongly
decrease when incubating eggs are exposed to flows
high enough to scour redds (Beamer and Pess 1999;
Greene et al. 2005; Kinsel et al. 2008; Ward et
al. 2015). We related egg survival to high flow
events by (a) using established flood recurrence
interval (FRI) curves derived from 9 gages in the
watershed (King County 2016b) and their relation-
ship to bankfull flow to estimate spatiotemporally
explicit FRI from DHSVM-predicted flows and (b)
applying the egg survival-FRI relationship from Bea-
mer and Pess (1999), calibrated for twice-daily
events affecting individuals instead of annual events
affecting the whole population. We assume that this
adaptation is reasonable but we note that the pub-
lished relationship in Beamer and Pess (1999) repre-
sented spatially averaged peak flows and outmigrant
survival measured at a single gage and not a flow–
survival relationship at individual sites. A potential
bias of our assumption that every flow event contrib-
utes proportionally to mortality is that in reality the
relationship may be nonlinear with a threshold

above which flows kill eggs but below which eggs
remain unscathed.

Salmon are known to move downstream and
outmigrate at higher rates during high flow pulses
(Aarestrup et al. 2002; Kubo et al. 2013; Notch et
al. 2020; but see Kelson and Carlson 2019). Fish
movement in the IBM is implemented as a four-step
process that estimates how far a fish could move, its
innate downstream drive (i.e., a downstream bias
that increases as fish grow and then tapers off as
summer progresses), selection of which reach the fish
enters at confluences, and whether the fish stops
early if it encounters high-quality habitat (Hawkins
et al. 2020). Because the propensity of fish to stop
early may be counteracted during high flows, we
adapted the IBM such that high flows diminish the
probability that an outmigrating fish will stop early.
We also assumed that larger fish could swim farther.

IBM Calibration. Predictions of salmon mass, sur-
vival, and timing of smolt outmigration were cali-
brated by iteratively adjusting parameters such that
outcome metrics matched distributions of data from
smolt traps operated by the Tulalip Tribes from 2001
to 2019 (Kubo et al. 2013; Tulalip Tribes 2019). We
began with the parameter set from Hawkins et
al. (2020) and performed additional calibration due to
the new potential for flow to affect two life stages,
and because in many reaches DHSVM-RBM pre-
dicted more extreme water temperatures (i.e., cooler
during winter and warmer during summer) compared
to the stream temperature data used in Hawkins et
al. (2020). All parameters were the same as reported
in Hawkins et al. (2020) except for the 11 parameters
in Table S3, which were tuned during this study. A
comparison of salmon outcome metrics to empirical
distributions is presented in Table S4.

RESULTS

DHSVM-RBM Flow and Water Temperature
Projections

The overall magnitude of DHSVM-predicted flow
at the river outlet was not projected to change very
much in the future (grand median across GCMs of
�16 mm/s, range of �701 and 999 mm/s); although
there was uncertainty across GCMs, there was a
small increase during winter due to increased peak
flows and a slight decrease during summer (Figure 5;
Figure S2). Variability was greatest across the 10
GCMs during winter and least during summer. In
other words, flow may or may not increase during
winter, but the models are in agreement that it will
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FIGURE 5. Changes in DHSVM-RBM-predicted flow (left) and water temperature (right) resulting from climate change. Data are the differ-
ence between mean future (2089–2099) and historical (1995–2005) predictions across 10 global climate models and 11 years. Time-series

panels (top) show annual patterns in median daily change (dark line) and 5th and 95th percentiles (shading) at the river outlet. Maps show
mean seasonal changes in flow during (a) fall (September–November), (b) winter (December–February), (c) spring (March–May), and (d) sum-

mer (June–August), and seasonal changes in water temperature (e–h). Map color ramps were binned as quantiles with probabilities of 0,
0.05, 0.15, 0.3, 0.45, 0.6, 0.75, 0.95, and 1.
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remain the same or be slightly lower during summer.
Future flows were projected to increase the most dur-
ing winter (everywhere), fall (lower mainstem), and
spring (headwater reaches), and to decrease the most
during summer (especially in the mainstem)
(Figure 5a–5d). Low elevation tributaries were pro-
jected to experience the least hydrological change
across seasons.

RBM-predicted water temperature was projected to
increase year-round at the river outlet (grand median
across GCMs of 4.0°C, range of �5.1°C and 13.6°C),
with slightly greater increases during summer,
although there was uncertainty across GCMs
(Figure 5; Figure S2). Water temperature in the
mainstem was projected to increase the most during
summer and the least during winter. Future water

FIGURE 6. Changes in DHSVM-RBM-predicted water temperature resulting from climate change and riparian scenarios. Time-series panels
(left) show annual patterns of water temperature at the river outlet in median daily change (dark line) and 5th and 95th percentiles (shad-
ing). Maps show mean seasonal changes during summer (June–August); color ramps were binned as quantiles as in Figure 5. (a) Changes in

water temperature under baseline riparian conditions attributable to climate change. Changes in water temperature relative to baseline
riparian conditions in a future climate attributable to (b) full riparian restoration, (c) partial riparian restoration, and (d) minimum protec-

tion riparian management. Data for all scenarios are ensemble means for 10 global climate models over 11 years. Panels (b–d) depict riparian
scenario effects alone so that performance of various riparian actions can be compared, given a common future climate; note difference in y-
axes from panel (a). The net effect of climate and riparian scenarios on future temperature is the sum of panel (a) and one of panels (b–d).

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION534

FULLERTON, SUN, BAERWALDE, HAWKINS, AND YAN



temperature warming was greatest in the historically
snow-influenced upper Middle Fork and mainstem
Snoqualmie River during summer and fall, high ele-
vation tributaries during spring, and in lowland trib-
utaries during winter (Figure 5e–5h).

The riparian restoration scenarios decreased the
climate signal, whereas the minimum protection sce-
nario amplified the climate signal. The full restora-
tion scenario decreased temperatures at the river
outlet by a grand median across GCMs of 0.2°C
(range 0–1.3), the partial restoration scenario by
0.1°C (0–1.0), and the minimum protection scenario
increased temperatures by 0.1°C (0.2–0.9). However,
changes associated with riparian scenarios were mod-
est relative to the ~4°C increases associated with cli-
mate change (Figure 6). The two riparian restoration
scenarios (full and partial) produced similar
decreases in future water temperature during spring,
summer, and fall but had no effect during winter due
to low radiation inputs (Figure 6b, 6c). The minimum
protection riparian scenario produced the opposite
effect, warming temperatures during spring, summer,
and fall (Figure 6d). Notable differences in water
temperature between the full and partial restoration
scenarios occurred near the convergence zone of the
North, Middle, and South Forks. The minimum pro-
tection scenario increased temperatures in the Rag-
ing River and other lowland tributaries.

Chinook Salmon Response to Flow

Scour of eggs incubating in redds accounted for 79%
of salmon mortalities in the baseline riparian scenario
and historical climate, and occurred during late fall
and early winter when eggs were still in the gravel and
flows were annually highest (Figure S3a). The stochas-
tic mortality events affecting mobile juveniles predomi-
nantly affected smaller fish <1 g (Figure S3b).

The timing of Chinook salmon outmigration ranged
from late December into July, peaking in April and
May (Figure 7b, “Historical”), which matched well
with empirical observations at smolt traps. Outmigra-
tion distributions for individual years were often
bimodal and consisted of an early wave of fry
migrants that were pushed downstream by higher
flows, and a later and smaller wave of larger parr
migrants (Figure 8a). Bimodal peaks are commonly
observed in the smolt trap data (Kubo et al. 2013).

Chinook Salmon Response to Climate Change

Our model predicted that survival of sub-yearling
and potential yearling Chinook salmon would
increase by 86% and 46%, respectively, by the end of

the century under current baseline riparian condi-
tions (Table 1; Figure S4). Stochastic mortality of
juveniles increased by 68% (median of 401,000 fish)
in the future, presumably due to decreased growth
(Figure S3). However, this increase was counteracted
by a 47% decrease (median of 715,000 fish) in the
number of eggs that were scoured. Alevins emerged
from redds nearly three months earlier in the future
climate (Figure 7a), allowing many to avoid the
effects of high winter flows (scour affected eggs but
not alevins in our model), and giving them a head
start on the growing season. With warmer spring
rearing conditions, fish attained sizes necessary for
outmigrating nearly three months earlier (Figure 7b).
Growth of fish that remained in streams over sum-
mer (i.e., potential yearling migrants) decreased dur-
ing summer months but remained largely positive
during the historical climate (Figure 9a). However, in
a warmer future climate, growth of potential year-
lings during summer became negative causing fish to
lose weight (Figure 9b).

The size distribution for both sub-yearlings and
potential yearlings remained similar (Figure 8), but
became skewed toward smaller sizes on average,
especially for potential yearlings (Table 1). This
change could be explained by the effect of higher sur-
vival leading to higher conspecific density, which has
a negative effect on salmon growth due to increased
intraspecific competition. The bimodal distribution of
fry and parr outmigrants was preserved (Figure 8a).
The fraction of potential yearlings to all survivors
(i.e., sub-yearling migrants and potential yearlings
remaining alive at the end of the simulation)
decreased from about 12% to about 8% on average.

Chinook Salmon Response to Riparian Scenarios

The riparian management scenarios influenced
salmon performance, but most changes were small
relative to climate impacts (Figure 10). The largest
effects of riparian scenarios in a future climate were
increases in the mass of potential yearling migrants
in the full (31%) and partial (29%) restoration scenar-
ios. The magnitude of change was similar for these
two scenarios and both were large enough to counter-
act the 21% decrease in mass of potential yearling
migrants expected as a result of climate change.
Potential yearling growth was higher during winter
relative to the historical climate but was less nega-
tive than the baseline scenario during summer in the
future climate (Figure 9c). Effects on sub-yearlings
were small and in the expected directions, with mar-
ginally higher sub-yearling migrant mass (~1%),
lower survival (1%–1.5%), and later outmigration
(one day) (Table 1). The fraction of potential
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yearlings to all survivors increased by about 1.5%.
The minimum protection riparian scenario had the
opposite effect on survival (1% increase) and outmi-
gration (one day earlier), but no effect on mass.

DISCUSSION

This study indicated how a warmer climate may
affect a threatened coldwater fish population and to
what extent riparian restoration could counteract
some of the projected freshwater impacts. Our projec-
tions about flow, water temperature, and Chinook
salmon in the Snoqualmie River can be used by local
watershed managers in conjunction with socioeco-
nomic priorities to consider tradeoffs that meet the
needs of multiple water users. Our analytical frame-
work, modeling tools, and general insights can be
adapted and applied to similar problems in other
watersheds.

Chinook Salmon Response to Flow

Including the effect of flow (i.e., on egg survival and
sub-yearling outmigration) overcame a shortcoming of
earlier model versions and improved realism by better
representing known mechanisms (Greene et al. 2005;
Ward et al. 2015). Experiments examining the relation-
ship between scour and egg survival have occurred in
nearby watersheds, but we do not have local data to val-
idate simulated egg survival rates. However, incorpo-
rating these fish-flow relationships into the model
produced a better match to distributions of sub-yearling
migrant size and timing observed at the smolt trap in
the lower Snoqualmie River (Table S4; trap location
depicted in Figure 1). Moreover, we reproduced the
observed bimodal outmigration distribution, including
the early peak of frymigrants.

There are other potential fish-flow relationships that
may be useful to explore in futuremodeling. For instance,
the response by alevins to scouring flows may be an
important but unaccounted-for influence on early juve-
nile survival. Additionally, it is likely that flow affects

FIGURE 7. Phenology of Chinook salmon emergence (a) and sub-yearling outmigration (b) under baseline riparian conditions for historical
(1995–2005; blue) and future (2089–2099; orange) climates. Histograms depict the thousands of simulated salmon (y-axis) that emerged or
outmigrated over time (x-axis); bar height is the median of simulated fish responses to 10 global climate models. Data are only plotted for

surviving salmon, which differ by life-history strategy and scenario.
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FIGURE 8. Final mass of Chinook salmon sub-yearling migrants (a) and potential yearlings (b) under baseline riparian conditions for histor-
ical (1995–2005; blue) and future (2089–2099; orange) climates. Histograms depict the thousands of simulated salmon (y-axis) reaching a
given mass by the end of the simulation (x-axis) that outmigrated as sub-yearlings or remained in the watershed as fish that may become

yearling migrants the following year; bar height is the median of simulated fish responses to 10 global climate models. Data are only plotted
for surviving salmon, which differ by life-history strategy and scenario.

TABLE 1. Summary metrics for Chinook salmon that were alive at the end of one-year simulations in each scenario. Survival, dates, and
mass of sub-yearling and potential yearling migrants are medians (5th and 95th percentiles) for surviving fish in each scenario, pooled across

10 global climate models and 11 years. Dates are formatted as month/day.

Riparian
scenario

Sub-yearling
survival

Potential yearling
survival

Date
emerged

Date outmigr-
ated

Mass of sub-
yearlings

Mass of potential
yearlings

Historical climate (1995–2005)
Baseline 0.105 (0.04, 0.28) 0.013 (0.01, 0.03) 2/27 (1/12,

4/7)
4/8 (2/7, 6/12) 0.81 (0.48, 3.13) 4.73 (1.37, 13.53)

Full
restoration

0.104 (0.04, 0.27) 0.013 (0.00, 0.03) 2/28 (1/12,
4/8)

4/11 (2/9, 6/13) 0.85 (0.49, 3.14) 5.44 (1.75, 14.44)

Partial
restoration

0.106 (0.04, 0.28) 0.011 (0.00, 0.03) 2/27 (1/12,
4/7)

4/11 (2/8, 6/13) 0.84 (0.49, 3.15) 5.31 (1.77, 14.21)

Minimum
protection

0.112 (0.05, 0.29) 0.012 (0.01, 0.03) 2/21 (1/6, 4/
2)

4/3 (2/2, 6/8) 0.82 (0.48, 3.10) 4.31 (1.46, 12.05)

Future climate (2089–2099)
Baseline 0.195 (0.12, 0.48) 0.019 (0.01, 0.10) 12/9 (11/19,

1/6)
1/14 (12/9, 3/

10)
0.84 (0.52, 2.47) 3.75 (1.10, 11.91)

Full
restoration

0.192 (0.12, 0.48) 0.019 (0.01, 0.09) 12/9 (11/20,
1/7)

1/15 (12/9, 3/
11)

0.85 (0.52, 2.49) 4.91 (1.65, 13.82)

Partial
restoration

0.193 (0.12, 0.48) 0.019 (0.01, 0.10) 12/9 (11/20,
1/7)

1/15 (12/9, 3/
11)

0.85 (0.52, 2.49) 4.84 (1.65, 13.94)

Minimum
protection

0.197 (0.12, 0.48) 0.020 (0.01, 0.10) 12/7 (11/18,
1/5)

1/13 (12/7, 3/8) 0.85 (0.52, 2.48) 3.65 (1.10, 10.45)
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habitat area available to rearing juvenile salmonids, and
that increased floodplain accessmay increase growth and
delay outmigration due to increased foraging opportuni-
ties in productive floodplain habitats (Jeffres et al. 2008).
Flow also affects invertebrate drift rate that could alter
food availability to salmon (Imbert and Perry 2000), and
may influence energy expenditure by juveniles holding
against currents (Enders et al. 2003).

Chinook Salmon Response to Climate Change

We predicted that warmer stream temperatures
would lead to accelerated egg emergence, higher

winter, spring and fall growth rates, earlier sub-
yearling outmigration, lower summer growth rates,
and increased survival. These findings are consistent
with Hawkins et al. (2020). Accelerated egg develop-
ment may be caused by a combination of warmer
winter incubation temperatures (Mundy and
Evenson 2011), such as in our modeling, and shifts in
adult spawn timing (Beer and Steel 2018; Austin et
al. 2021), which we did not model. Higher salmonid
growth has been attributed to warmer temperatures
associated with climate change, riparian alteration
and wildfire (Dunham et al. 2007; Beer and
Anderson 2013; Rosenberger et al. 2015; Falke et
al. 2019). The increased growth afforded by a warmer
fall, winter and spring may provide sufficient energy
stores for salmon to survive stressfully warm sum-
mers, provided that other aspects of seasonal habitats
such as food and shelter availability remain intact
(Armstrong et al. 2021). Data on food availability in
the Snoqualmie watershed are scarce; thus, we can-
not say how it would limit or enhance growth under
altered fish densities and increased temperatures.
However, given that salmon abundance is much
lower than it was historically, fish are likely not food
limited at currently observed densities. Climate-
induced timing shifts in one life stage (e.g. spawning)
constrain possible outcomes in others (e.g. emergence
and outmigration) (Crozier et al. 2008). Because our
model did not follow fish through the entire life cycle,
we were unable to evaluate such effects.

An earlier, warmer, and longer growing period is
known to accelerate outmigration (Otero et al. 2014;
Peer and Miller 2014; Munsch et al. 2019). The con-
sequences of earlier outmigration are unknown. Sur-
vival of Columbia River Chinook and steelhead to
adulthood was higher when fish outmigrated earlier
during spring (Scheuerell et al. 2009; Chasco et
al. 2021). However, outmigration that is too early
may be detrimental if the food supply for juvenile
salmon in the marine environment is meager
(Tomaro et al. 2012; Satterthwaite et al. 2014), if
predators are more abundant (Miller et al. 2013;
Weitkamp et al. 2015), or if ocean conditions are
unfavorable for salmon when they arrive (Henderson
et al. 2018; Crozier et al. 2021). Thus, a larger num-
ber of smaller salmon reaching marine waters early
may not translate into survival to adulthood (Munsch
et al. 2019).

In our simulations, sub-yearling migrant survival
was much higher in the future. Whether instream
survival of juveniles will increase or decrease in a
warmer climate will be case specific and will depend
on numerous factors including ecological interactions.
Our findings could be partly explained by the reduced
duration that eggs were exposed to scouring flows,
that we did not model the effect of scouring flows on

FIGURE 9. Daily per capita growth rates for potential yearling
Chinook salmon over time for (a) historical (1995–2005; blue) and
(b) future (2089–2099; orange) climates, and for (c) the future
climate plus full riparian restoration (2089–2099; purple). Plots

depict the mean growth rates across all potential yearlings in each
simulation. Variance across 10 global climate models and 11 years
is shown as medians (dark lines), the interquartile range (dark

shading), and the 5th and 95th percentiles (light shading).

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION538

FULLERTON, SUN, BAERWALDE, HAWKINS, AND YAN



alevins, or that we did not model the effect of climate
on spawn timing. Or it may be that enhanced growth
during a warmer winter and spring allowed salmon
to leave the system before the onset of stressfully
high spring and summer temperatures. Ecological
interactions may also be affected by climate change
(Lynch et al. 2016). Salmon growth is highly sensitive
to ration (Beauchamp 2009); if climate change alters
prey abundance or composition, this could signifi-
cantly alter future growth and survival (Lusardi et
al. 2020). Warmer temperatures can increase expo-
sure to pathogens, potentially reducing survival
(McCullough et al. 2009), and warmwater nonnative
predators may expand their range as the climate
warms (Rubenson and Olden 2017).

We found that more potential yearling salmon sur-
vived until the end of summer (when our simulations
terminated) but these survivors lost mass over sum-
mer. The decrease in mass likely resulted from
increased metabolic demand during high summer
temperatures and increased competition with a
higher number of surviving conspecifics. A larger
cohort of smaller fish at the start of winter may not
convey higher survival until outmigration because
overwinter survival is a known bottleneck for stream
salmonids (Quinn and Peterson 1996; Ebersole et

al. 2006). Yearling Chinook salmon and other species
that remain in streams for one or more years such as
coho salmon and steelhead may be especially stressed
by climate change (Myrvold and Kennedy 2015).
Thermal refuges will be increasingly important habi-
tats for these species during summer in the future
(Torgersen et al. 1999; Fullerton et al. 2018) as long
as refuges do not increase risk to predation or
angling (Keefer et al. 2009).

Chinook Salmon Response to Riparian Scenarios

There is ample evidence that riparian vegetation
has the potential to significantly reduce stream tem-
peratures (Sun et al. 2015; Fabris et al. 2018; Seixas
et al. 2018), but there is mixed support about
whether riparian vegetation improvements can offset
temperature increases and impacts to salmon
expected from climate change (Justice et al. 2017;
Trimmel et al. 2018; Ayllon et al. 2019; Wondzell et
al. 2019; Yonce et al. 2020). This is unsurprising
because the processes involved are highly watershed
specific. In the Snoqualmie watershed, our riparian
restoration scenarios were unable to completely coun-
teract expected increases to water temperature

FIGURE 10. Change in simulated Chinook salmon outcomes (x-axis) across scenarios (y-axis). Circle size indicates proportional change and
colors indicate whether metrics increased (white) or decreased (black). Climate effect, Baseline riparian (row 1): changes in outcomes attrib-
utable to climate change under baseline riparian conditions. Full restoration effect, Future climate (row 2): changes in outcomes attributable
to full riparian restoration in the future relative to baseline riparian conditions in the future. Partial restoration effect, Future climate (row
3): changes in outcomes attributable to partial riparian restoration in the future relative to baseline riparian conditions in the future. Mini-
mum protection riparian effect, Future climate (row 4): changes in outcomes attributable to the least protective riparian management in the
future relative to baseline riparian conditions in the future. As in Figure 6, rows 2–4 depict riparian scenario effects in a future climate alone
(i.e., without also including the climate change effect). See Table 1 for absolute values.
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caused by climate change. However, our study dem-
onstrated that riparian restoration has the potential
to increase the mass and proportion of yearling
migrants by the end of their first summer, relative to
future conditions where riparian vegetation remains
unchanged. This is salient because the yearling
migrant life-history type has historically been an
important component of the Snoqualmie population
(Kubo et al. 2013; King County 2017, 2021) and con-
tributes to the broader diversity of the Puget Sound
Chinook Salmon Evolutionarily Significant Unit (Bee-
chie et al. 2006). Habitat conservation and restora-
tion activities that benefit this dwindling life-history
type will be important for recovery of this population.
Protecting intact thermal regimes would presumably
also benefit other species with yearling life-history
strategies (Quinn et al. 2019).

Interestingly, the partial and full riparian restora-
tion scenarios had nearly the same magnitude of ben-
efit for potential yearling migrants. Both scenarios
reduced spring, summer, and fall temperatures simi-
larly in the lower mainstem and neither scenario
reduced temperatures in the Raging River or other
lowland tributaries. The full restoration scenario
decreased temperatures to a greater extent upstream
of Snoqualmie Falls, suggesting that potential year-
lings primarily using downstream habitats benefitted
only minimally from changes in the reaches at and
above the upper extent of their distribution. It is pos-
sible that the benefits of riparian shade in these
reaches were too localized to affect the large body of
water or very far downstream (Caissie 2006; Webb et
al. 2008). Shade benefits provided by riparian vegeta-
tion will depend on the tree species (Dugdale et
al. 2018), and the riparian community may shift in
the future (Nilsson et al. 2013). Incorporation of these
details into modeling could yield practical restoration
planning insights.

In our study system, riparian restoration did not
appear to influence sub-yearling migrants. Riparian
restoration has the largest effect on stream tempera-
ture during summer when solar radiation is most
direct and intense (Caissie 2006), whereas the sub-
yearling migrants left the system during spring
before temperatures got too warm. If other factors
keep Chinook salmon in the watershed longer in the
future such as if spawning is delayed due to high fall
temperatures (Crozier et al. 2008), then riparian res-
toration would likely also benefit sub-yearling
migrants that would be exposed to warm tempera-
tures during late spring and early summer.

The minimum protection riparian scenario affected
salmon similarly to climate change, but effects were
smaller. Compared to climate change, the minimum pro-
tection riparian scenario elevated temperatures earlier
in the season (maximum temperatures occurred in

spring instead of summer), and increased temperatures
to a greater extent in smaller low elevation tributaries.
Because sub-yearling salmon outmigrated before sum-
mer, they were largely unaffected, whereas the mass of
potential yearling salmon decreased. This scenario
included both conservation of intact riparian areas and
further degradation of already narrowed riparian
buffers. The benefits of protecting the intact areas were
not sufficient for counteracting the impacts of the
degraded areas for potential yearling salmon, likely
because fish spend less time in reaches with intact ripar-
ian buffers (i.e., lower-order reaches at higher
elevations).

Our riparian restoration scenarios influenced only
water temperature. It is likely that altered riparian veg-
etation would also influence flow pathways, bank stabil-
ity, geomorphology, instream habitat, and supply of
terrestrial invertebrates as a food source (Quinn et
al. 2019). Increased wood supply could increase the
abundance of cold deep pools. Our predictions of water
temperature did not capture localized thermal refuges
that can sustain fish in too-warm reaches (Corey et
al. 2020; Sullivan et al. 2021). Moreover, our riparian
scenarios assumed riparian buffers were immediately
100% functional. In reality, shade benefits will accrue
gradually as trees mature (Quinn et al. 2019), and suc-
cessful reestablishment and growth of riparian vegeta-
tion depends on site suitability, competition with non-
natives, and biological disruption by deer, beaver, and
other riparian animals (Wondzell et al. 2019). Finally,
riparian restoration is only one type of restoration action
that can improve thermal habitats for salmon. Recon-
necting streams to off-channel floodplain habitats (Bond
et al. 2018), re-introducing beaver (Dittbrenner et
al. 2018), and directly manipulating coldwater patches
(Kurylyk et al. 2015) are also important.

Management Implications

Snoqualmie Watershed. The outcomes we pre-
dicted can be used by practitioners in the Snoqualmie
River watershed to consider what kinds of manage-
ment plans could be practically and effectively imple-
mented to benefit USESA-listed salmon while also
meeting the needs of other water users. Importantly,
our study suggests that riparian restoration is worth
the effort, especially as it benefits yearling Chinook
salmon, which are an important life-history type for
this population and for Puget Sound in general. That
we did not observe an effect on sub-yearling migrants
does not mean that they would not benefit from ripar-
ian restoration if other factors were considered such
as shifted spawn timing and altered ecological inter-
actions that cause juveniles to delay outmigration, or
if other stressors increased.
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Our finding that the full restoration scenario
added little compared to the partial restoration sce-
nario suggests that even some level of riparian resto-
ration is beneficial. However, because we did not see
as much benefit of protecting intact habitats if others
are allowed to degrade, it also suggests that more
refined studies are necessary to understand how
much and particularly where riparian or other
temperature-reducing restoration will be most useful.
For example, given that riparian restoration did not
affect temperatures in the Raging River, whereas this
tributary was affected negatively by the minimum
protection riparian scenario, this may be an impor-
tant location to enact conservation measures to pro-
tect existing high-quality riparian habitats that can
modulate future climate change. Field studies to better
understand the seasonal habitats used by yearling
migrant juveniles (e.g., King County 2017, 2021) will be
essential for understanding where riparian restoration
may best enhance thermal conditions for salmon at dif-
ferent life stages. Our model did not examine the effects
of thermal stress on upstream migration and spawning
by adults. This life stage is notoriously sensitive to high
temperatures (Crozier et al. 2008; Bowerman et
al. 2018; Keefer et al. 2018) and should also be assessed
before conclusions about utility for salmon of different
riparian restoration scenarios are made. Because
spawning adult Chinook salmon typically use the main-
stem and lower sections of the major tributaries for
spawning, temperatures in these reaches could become
limiting in a warmer climate.

Conservation planners in the Snoqualmie Basin are
grappling with what kinds of riparian restoration to
pursue (https://kingcounty.gov/services/environment/
watersheds/snoqualmie-skykomish/fish-farms-flooding.
aspx). Their difficult decisions about how to balance the
needs for fish with other water uses (e.g., irrigation,
municipal water, flood control) will ultimately include
both ecological and socioeconomic factors. Our simple
scenarios provide book ends (i.e., the full restoration
and baseline scenarios) and two plausible yet somewhat
generic scenarios (partial restoration and minimum
protection) that can help planners envision possible
responses by salmon. Our models and analytical frame-
work can easily be used to examine more specific sce-
narios of riparian restoration in light of climate change,
and could be adapted to consider other life stages, other
species, other factors, and other potential management
actions.

Broader Applicability. There may be an upper
limit to what riparian restoration can do for salmon
and other aquatic species, as suggested by our finding
that the full and partial restoration scenarios pro-
duced similar results. This may be due in part to
diminishing benefits as buffer width increases, or

because effects of restoration in upstream reaches are
localized and do not translate downstream to fish-
bearing reaches. Riparian shading can help cool
stream temperatures when solar elevations are high
and when trees have maximum leaf coverage, for
example, at noon in summer (Caissie 2006). It is not
an effective measure for reducing water temperatures
during late fall through early spring when solar ele-
vations are lower and trees lose foliage, or in streams
that are already shaded topographically or that are
too wide for riparian vegetation to provide shade
(Caissie 2006; Dugdale et al. 2018). Riparian restora-
tion will most benefit salmon and other aquatic life
during summer, which may or may not coincide with
times they experience thermal stress.

Water temperature is only one of many potential
stressors influencing the viability of salmon and other
aquatic species into the future. Managers will likely
need to employ multifaceted strategies to conserve
coldwater species. In addition to riparian restoration,
actions in freshwater may include protecting/estab-
lishing coldwater refuges, restoring physical habitats,
improving connectivity, increasing food supply, and
controlling predator and competitor populations (Bee-
chie et al. 2012; Kurylyk et al. 2015; Naman et
al. 2018). Increasing exchange between surface
water, hyporheic water, and groundwater may reduce
diel variability and buffer fish from exposure to daily
thermal extremes (Arrigoni et al. 2008). Practitioners
would need to adapt the coupled modeling system we
describe here to accommodate these additional
sources of uncertainty.

Here, we have demonstrated potential implications
for juveniles of one species in one watershed, but
other life stages (adults) and species (coho, steelhead,
bull trout, non-salmonids including warmwater spe-
cies) may also be directly affected by altered flow and
thermal regimes, especially in regions expected to
experience substantial change. Our modeling frame-
work could be applied with a life cycle approach (Cro-
zier et al. 2021; Jorgensen et al. 2021) to examine
what life stages may be most sensitive to climate-
induced habitat changes, and whether riparian resto-
ration or other actions could benefit populations long
term. Managing for viable salmon populations will
require a holistic strategy that extends beyond the
watershed boundary and into the marine
environment.

An analytical framework such as the one we pre-
sented here can be useful for exploring the effects of
multiple freshwater actions simultaneously to see
their cumulative effect on fish populations. The phys-
ically based DHSVM-RBM is ideal for investigating
how changes to the landscape affect hydrology and
water temperature, and the mechanistic fish IBM can
provide insights about how fish may respond to these
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changes. This coupled modeling system could be eas-
ily adapted for other watersheds where similar man-
agement questions exist, provided that sufficient
empirical data are available for calibrating models.
At a minimum, several flow and temperature sensors
that capture the spatial breadth of conditions in a
watershed are needed for parameterizing DHSVM-
RBM (Cao et al. 2016; Yearsley et al. 2019; Yan et
al. 2021). For basins with seasonal snowpack, mea-
surements of snow depth or SWE from Snow Teleme-
try (SNOTEL) stations are also important for
calibrating the snow submodel of DHSVM-RBM for
proper representation of snow processes that are key
to hydrological and thermal regimes (Sun et al. 2019;
Yan et al. 2021). Basin-specific estimates of when
and where fish spawn, spawner abundance, and when
juveniles go to sea are key for parameterizing and
calibrating the fish IBM (Hawkins et al. 2020;
Table S3). Some important next steps will be to incor-
porate deep groundwater pathways into the physical
model and to develop the fish model into a full life
cycle model (e.g., Crozier et al. 2021; Jorgensen et
al. 2021) and consider multispecies interactions (as in
Hawkins et al. 2020) and additional management
actions. Investments in such improvements should
produce useful and practical management insights.
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